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ABSTRACT

We consider the choice of technique in a continuous time infinite

horizon optimal growth model. There are n +2 goods, output, labor

and machines IM 2 , ... M' We can convert one unit of labor to" VM n
r

q units of output or ri units of , for each i . Also, we can

convert one unit of labor and one unit of Mi to q units of output.

We prove under some sufficient and necessary conditions that we never

build any machines for the general concave utility function. If the

ccndition is not met, we build one machine from beginning to end when

the utility function is linear; when the utility function is non-

linear life gets complicated. In the one machine case, we give a

general algorithm to solve it. In the many machines case, we prove

an asymptotic result (as t , the behavior is similar to that of

the linear case) and give examples showing that a simple characteriza-

tion of the optimal solution is difficult.
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CHAPTER I

MODEL AND DISCUSSION

§1. Introduction

In this paper we investigate the choice of investment in a con-

tinuous time optimal growth model. The general model is described

as follows: there are m goods, some of which may be provided

exogenously (e.g. labor). The technology is described by a set of n

activities, each of which consumes various amounts of goods and produces

various amounts of goods. To be more specific, the technology is

given by a pair of nonnegative m x n matrices A B and a nonnegative

n-vector b , where A ij( ij) denotes the amount of good i used

(produced) to operate activity j at unit level, and bi(t) denotes

the amount of good i exogenously provided at time t . There is a

utility function which is an increasing concave function of the activity

level.

Problem:

Given b(t) , find an activity vector x(t) to maximize the dis-

counted integral of future utility.

We can write this as a continuous programming problem:

(P) Maximize f etU(x(t))dt

0

t

subject to: A'x(t) < B.x(s)ds + b(t)

0

x(t) • 0.
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If x(t) is (P) feasible (t) > 0 , Ax(t) < Bx(s)ds + b(t)

0
then we have the following dual problem:

(D(i(t)) >: Minimize fw(t).b(t)dt

subject to: w(t)A > fw(s)Bds + e- t'vU(x(t))

t

w(t) > 0.

§2. Optimality Theorem for the General Model

In this section we prove that a feasible solution (x(t)) is

optimal if we can find the corresponding dual price (w(t)) and satisfy

some complementary slackness conditions.

Theorem 1-1:

If the following four conditions are satisfied

Lt
(l) x(t) is (P) feasible i.e., Ax(t) < f B.x(slds + b(t)

I0
i(t) > o0

(2) w(t) is (D(i(t))) feasible li.e., wz(t)A > f w(s)Bds +

-Ott "t(() ,¢ t
tt

(3) w(t) [A(t) -f B'x(s)ds -b(t)] 0

(4) [w(t)A -f (s)Bds--e' VU(i(t " t) i 0

then (t) is (P) optimal, w(t) is (D(x(t))) optimal.
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Proo f

Let x(t) be any (P) feasible solution

w(t) be any (D(i(t))) feasible solution.

w(t)-b(t) > w(t). F~ t 1.xs

Integrating both sides gives

Ft
fw(t).b(tOdt > fw(t)- -t fB-x(s)dsjdt

0 1
00l,3 Wt)A - ws)BasJx(t)dt (changing the order of
f f

integral)

>je- VU(i(t)).x(t)dt Mwt) is (D) feasible)

+f~ ~ ) (~t)d
0

at *U((t))t + e U((t)) U((t) -Id t))d

00

fwe-t).b~(t)dt + Me~U~)) 3

00
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but if we replace x(t) , w(t) by k(t) , w(t) then the above ">"

are replaced by "=" (from (3) and (4)) thus

I0
(O) b(O~dt e-at. U( (t))dt + M .(6)

0 0

From (5) and (6)

fjw(t)°b(t)dt reaches the lower bound and

e-atU(i(t))dt reaches the upper bound.

So w(t) is (P) optimal

w(t) is (D(x(t))) optimalM

§3. Description of the Investment Model

We now consider the special case as follows:

(1) There are n +2 goods, output (consumption), labor, and

n machines MIM 2, ... , Mn

(2) There are n+l production activities Po,PI ... ' Pn

P0  converts one unit of labor to q units of output.

Pi converts one unit of labor and one unit of Mi to qi
units of output 1 < i < n.

(3) There are n investment activities 11,12 ... I n where

I converts one unit of labor to r units of M. 1 < j < nJ j J

(4) Labor is given exogenously at constant rate of one.

-A 
via.~-
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Let x be the amount of labor allocated to P0

z. be the amount of labor allocated to P. 1 < i < n
1 1 -

yi be the amount of labor allocated to 1. 1 < i < n

Let a be the discount rate and U be a differentiable increasing

utility function of the output.

n
We define c(t) q-x(t) + q.'z.(t) and (t) U'(c(t))

i=l11

Problem:

Given initial stocks k. of M. choose X(t) = (x(t),zi(t),

_2n+1
Yi (t)) E I+ to

maximize e- at'U(c(t))dt

t

subject to: zi(t)< ri  Yi (s)ds + k. 1 < i < n

0

n
x(t) + (Yi (t) + z i(t)) <

By defining U(X(t)) U(c(t)) , VU(X(t)) - (qql ... I qn 0, .. 0).4(t)

2n+l n terms
E JR; and

0'r 0"r
S20

i I 0, .... 0 0,

A B E In+)( 2n+l) b(t) " (ki , ..., kn,l) , b(t) E mn+l
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The dual problem becomes:

Find w(t) (wl(t) ... , W(t),w(t)) G n+l to

00
minimize 0w -t)b(t)dt

cc t

subject to: w(t) > e -at (t)

d.(t) = w(t) - r w ds > 0 1 < i < n

t

w(t) + w(t)> e -Oct (t) < i < n.

If the utility function is linear, by giving the exact dual price,

we prove that (1) if q 2 max I , the stationary

- maxn ) + ri a + r. sraioar

program (Yi(t) = 0 , 1 < i < n) is optimal; (2) if q <= a + r ,
~~rtq t  r~q ),Ith

we build M in fact, any M s.t. r + r If the

utility function is nonlinear, life gets complicated.

To begin with, we do not know whether a right-differentiable

(see Perold [5]) optimal solution exists. Secondly, we do not know

2whether the dual price exists. To simplify the model, we restrict

the utility functions to those "well-behaved" differentiable increasing

functions such that there exist right-differentiable optimal solutions

ISince our model is an economic model, we would like an optimal solution
which is right-differentiable rather than just Lebesque-measurable.

21n 1968, Hanson [3] proved the strong duality of the similar model in
the finite horizon case.
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3
and the corresponding dual prices. Under this assumption, we prove

that (1) q > is still the sufficient and necessary conditions

for the existence of an optimal stationary program; (2) if the condition

of (1) is not met, we can prove an asymptotic result, i.e., as t - ,

the optimal solution has the same behavior as the linear case.

It is difficult to give a simple characterization of the optimal

solution of a nonlinear utility function because we have examples in

which we switch building machines (Chapter 4, Example 1), or build

some machine M. in time [TI,T 2 1 but later never use M.
J J

Even in the one machine case, we might have x(t) = 0 in the

first interval, x(t) > 0 in the second interval, and x(t) = 0

in the third interval (Chapter 3, Example 2).

In the following we prove that by manipulating the model we can

make some assumptions without losing generality.

Assumption 1: q > q2 >  
... > qn 9 r1  < r2  < ... <  rn

If qi = q. and r. > r. , apparently we never build M. (for

M. has the same output, but larger ri

(i) If k = 0 , then we discard M.j 3

(ii) If k. > 0 , we define a new problem with n -i machines3

(without M.) and the initial stocks k5  given by
3s

k k +k. k =k < s <n , s i, j
i i j s s = =

It's easy to see that the new problem is in fact the same

as the old one.

It is believed that for all "usual" concave functions, these properties
are true. Since our model is a simple economic model, there should
exist the dual price and a well-behaved optimal solution.
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Hence, without losing generality we can assume qi i qj ,

if i 0 j

Now we rearrange the machines in order of decreasing output.

n
Assumption 2: K = k. < 1

n , ij~l

that Zk.> ,let i < k. > 1 . We will show

that the general problem is in fact equivalent to this special case.

(1 envrbuild M ,s > j f j+ls ~ or k>i and q-I>q 2>" >q n

Zs(t) =0 , s>j+2 Vt >0. ( i=l

(2) By (1) we discard M , s > j +2

(3) Consider a new problem with machines M,M2 , . and q

replaced by qj+l"

By (2) and (3), it is clear that the new problem is essentially the same

as the old one, but ki < 1 for the new problem.

Before ending this chapter, we prove two theorems which play the

key role in the following chapters.

Theorem 1-2:

n
(1) x(t) + i (yi(t) + zi(t)) = 1 for all t (full employment).

(2) There always exists the dual price wi(t) = [ q-.(t) w(t)]+
l<i<n i

which satisfies the conditions of Theorem 1-1.
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Proof:

n
(1) If x(t) + . (yi(t) + zi(t)) = P(t) < 1

i21

since x(t) has output q , we can increase x(t)

by 1 p(t) to produce more output, contradiction.

(2) w(t) > 0 and w(t) + wi(t) > e - qi'(t)
± =

implies wi(t) > .qi.W(t) - w(t +

Define:

ki(t) = k. + r. Yi(s)ds
i0

If k > 0, Case i: zi(t) < ki(t)
by complementary slackness wi(t) - 0

[e- t.qi. (t) - %(t)1+

Case ii: zi (t) = k i(t)

w(t) + Wi) W e .qi. (t) implies1 i

at

wi(t) = [e - t q.(t) - W(01+

If ki = 0 , Case i: there exists T > 0 , such that k i) 0

for t < T and k it) > 0 for t > T

wi(t) = [e- t.qi.(t) - w(t)]+ Vt > T

Define 1(t - [e- .q .=,(t) - W(t)]+ for t<T

w(t) > ri f wi(s)ds (Wi (t) is the dual price)

t
for t T

r wi(s)ds (wi(s) > wi(s))tt
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Yi = 0 for t < T (ki(t) ) implies

the complementary slackness is also satisfied

for (t)

i

!Case ii: if k.(t) =0 for all t

similar proof as above.

Thus there exists an optimal price wi (t) [ e -  q "i(t) - w(0]E

Remark:

(1) If k. = 0 wi(t) need not be unique.
3. 3.

(2) From now on, we always assume wi(t) te .q.,(t) -w(t)]+

2n+l
A solution X(t) = (x(t),yi(t),zW(t)) E nl is called stationary

if x(t) =1 -k , Yi(t) = 0, zi(t) ki (k ki) for all t

S< i < n. Let max - v
1<i<n i

Theorem 1-3:

q > v is the sufficient and necessary condition for the existence

of an optimal stationary program.

Proof:

If q > v, the stationary program is feasible and c(t) =

n
q'(1-k) + i q constant implies p(t) - constant = c > 0

Define: w(t) ea q*(t) e "qc and w i(t) = e "(q i-q)P(t) =

-e "(qi-q)'c

It is easy to see that if we can prove d (t) > 0 1 < i < n

then the stationary program is optimal.



t -O t e-So

di(t) = e q'c - r fe (q q)-cds

t

e 'c [q _ ri(q i -q) ]

> 0 (cq ' ri(qi-q) is equivalent to q "

The other direction is similar. (Here we use the assumption of the

existence of the dual price.)U
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CHAPTER II

THE LINEAR UTILITY FUNCTION

To develop better understanding of the general concave utility

function, we start with the linear utility function. There are only

two kinds of the optimal program for the linear utility function:

one is never building any machine, the other is building only one

machine.

For completeness, we list the stationary program in the following.

§1. Stationary Program

Theorem 2-1:

q > v is the sufficient and necessary condition for the existence

of an optimal stationary program.

From now on, assume q < v

52. Nonstationary Program

r.q.
Machine j is called best, if r-q- = v . I = {i qi v

a + r.
N

1 < i < n} = {1,2, ..., N} , K = k. Machine i is called good,
= = i=l 1

if i E I

For any best machine j , the following program is called the

best program with respect to j : x(t) = 0 , yi(t) - 0 i # j

-r t
y(t) = (1-k)e J, zi(t) - ki  i E I - {j} , zjt) k. +

(l-k)l-e J Zr(t) = 0 r t I . (This means that all the good

machines are fully utilized, then the rest of the labor is used to

build machine J .)
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Theorem 2-2:

The best program with respect to j is optimal.

Proof:

n
c(t) q i z i(t) , t(t) - constant = a > 0 (because U is linear).

i=l

Define:

w(t) =e~ .Lq-a+s] edt a S q ~i2i~ ].a > 0

w(t) - e • - a if iE I

1 \3.
r qi f +

d (t) =e~ *a-a. + - "~5 a- - + _Ids = 0
a t

.i E -{j} ,di(t) = e .a" - - -j -a- i r Gds

+ + r il0

J - .) /

I i e I , da*t) riw[t) -j0 _] 0 0

.If = I tz(t) _kit) ; if i e I z.(t) 0
The complementary slackness is also satisfied U

Sa ., r t . a +..
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Economic Interpretation:

We can think as the present value of machine j If
a + r.

j -r.t
we only build machine j and fully utilize it, then k. (t) = i - e

J

and e q I - ]dt0 a+r. J

r4

j

~Ii
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CHAPTER III

GENERAL CONCAVE UTILITY FUNCTION - ONE MACHINE CASE

For the general concave utility, to get deeper insight about

the structure of the many machines, we begin with one machine case.

In the beginning, we derive some simple properties. Later we prove

that if the initial stocks are sufficiently large, we don't use labor

alone to produce output. If the utility function is quadratic, we

have a simple optimal solution. Otherwise, we have an example with

a non-simple solution. We also give an algorithm to solve the general

problem. By scaling, we can assume q = I without losing generality.

Because of the simple structure, we rewrite the primal and dual

feasibilities in terms of the following simplified notation:

x (t) x (t ", , y (t) -Y l (t) , z(t) -z (t) , r r I  , q ql 1

z(t) < rfy(s)ds

primal feasibility:

x(t) + y(t) + z(t) 1

x(t) , y(t) , z(t) > 0

- t .
w(t) > e (t)

w(t) r Wl(S)ds

dual feasibility: f

-ct

w(t) + w (t) > e -q.P(t)

l~-
w(t) , W (t) > 0

1 ~*,
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For completeness, we list the stationary program in the following.

§U. Stationary Program

Theorem 3-1:

1 > rq is the suificient and necessary condition for the

existence of an optimal stationary program U

From now on, assume 1 < rq

§2. Nonstationary Program

We begin with some simple properties.

Property 1:

y(t) > 0 , for all t

Proof:

If there exists an interval (T,T+c) such that y(t) = 0 for

t E (T,T+E) , then y(t) = 0 for all t > T , which by stationary

property implies 1 > rq Contradiction to 1 < r 0=a+r a+r

Corollary:

w(t) - r f w (s)ds = 0 for all t U
t

1We disregard those isolated time points. When we say y(t) > 0 for
all t , we mean there is no interval such that y(t) = 0 on that
whole interval.
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Property 2:

t

k(t) = k0 + r f y(s)ds = z(t) (fully utilize the machine).
0

Proof:

By contradiction. If not true,

Case i: there exists T > 0 such that z(t) < k(t) for all t >T

W1(t) = 0 (complementary slackness) implies w(t) = 0

w(t) > e-t'.(t) implies p(t) = 0 , contradiction.

Case ii: there exists TI , T2  such that z(t) < k(t) for

t e (T1 ,T2 ) and z(t) k(t) for t E (T2 ,T2 +E)

C(T1 ) = x(T)+qz(T) 0 +q.z(T) < x(T 2) + q.z(T 2 ) =

c(T2 ) implies (r) > (T

0 = w(T) - r f W(S)ds = w(T) - r T W ds (w1 (t) 0,

4 
1 2t E (T I T 2 ))

- W(T 1 ) - w(T 2 )

0 < w(T I) - e q-'(T (w(T I ) = 0)

-cT2
w(T 2) < e .q'p(T2) (z(T2 ) > 0)

-ciT2  - -cT1

From the above three equations, we have e .q.P(T2 ) > e "q'(T I) ,

contradiction to TI < T2  and (TI) > P(T2) U

Corollary:

k(t) < 1 for all t (We never accumulate to 1 unit of machine.)

Proof:

The maximum amount of machine we can have in an optimal solution

is given by the following program: x(t) - 0 , y(t) - l-k(t)
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t
z(t) = k(t) k(t) = r f [1-k(s)Jds + k , which implies k(t)0

1 - (l-ko)e-rt , thus k(t) < 1 for all t U

Remark:

Property 2 does not hold in the many machines case.

Property 3:

w(t) is continuous.

Proof:

w(t) = r f wl(S)ds U
t

Property 4:

p(t) is continuous.

Proof:

By Property 2 and 0(t) = U'(x(t) + q.z(t)) , if we can prove

for any given T > 0, a sequence tn - T such that x(t ) -xn n

we have (tn ) - i(T) , then 0(t) is continuous.

Case i: x(T) - 0 . If X(tn) x = 0 , apparently iP(t ) 4(T)n

If x(t n ) n x > 0 , then lim c(tn ) > c(T) and

lir O(t ) < 4(T)n =

-at -atBy slackness, e .(t n) w(t ) w(T) > e "(T)n n (T> iT

Combining the above two equations, we have (t n) - (T)

Case ii: x(T) > 0 . If x(t n) > 0 the same proof as above.

If x(t ) = 0 for all n lim c(tn ) n c(T) and
nn-
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lir p(t n ) > p(T)
n-wm

I-at -at
.e (n)< w(tn) -- w(T) =e " (T)

Combining the above two equation, we have (t) W(T)E

Corollary 1:

If u(x) is strictly concave, then (1) c(t) is continuous;

(2) x(t) , y(t) are continuous.

Proof:

(1) If c(t) is not continuous, then (t) is not continuous,

contradiction.

(2) c(t) = x(t) + q.z(t) For c(t) and z(t) continuous,

x(t) is continuous. y(t) = 1 - x(t) - z(t) implies y(t)

is continuous tooE

Corollary 2:

w1 (t) is continuous.

Proof:

(t) = le-t.q.p(t) - w(t)I+ Since p(t) and w(t) are

both continuous, wl(t) is continuous too•

Property 5:

If x(t) > 0 , y(t) > 0 , z(t) > 0 , then p(t) =c.e [ c - r(q - l)]t

c > 0 , t G (T 1 ,T 2 )
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Proof:

-at -at( l()

The dual equations are: w(t) = e .(t) , w (t) = e • (q-

[t-r (q-) It

w(t) = r f w (s)ds . The solution is l(t) = ce r c > 0

t

Corollary 1:

If u'(q) > 0 and x(t) > 0 , y(t) > 0 , z(t) > 0 , then

< < 0

Proof:

(t) [-r(q-l)(t) < U'(q)[ca-r(q-l)] = < 0I

Corollary 2:

If (t) = constant for t E (T,T+E) , then x(t) = 0 for

t E (T,T+E) U

Corollary 3:

c(t) is increasing in (TI,T 2 )

Proof:

c(t) = '-r(q-1)1'e < 0 , so J(t) is decreasing in

t . Since U'(x) is decreasing in x , c(t) is increasing in (TIT 2 )

Property 6:

If the utility function is strictly concave, then c(t) is a

strictly increasing function.

Proof:

If there exist T, T2  TI < T2  such that c(T I) > c(T2 )

by Property 4 there must exist T , T e [TIT 2) such that

2
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c(T) = max c(t)

tE[T,T 2]

If x(T) > 0 , by Property 5 c(t) is strictly increasing in

(T-E,T+E) , for E small enough, contradiction to

c(T) = max c(t)
tE[TI,T 2 ]

If x(T) = 0 , by Property 2 c(t) is strictly increasing in

[T,T+c) , for c small enough, contradictionE

In the following, we study the asymptotic behavior.

Theorem 3-2:

If the utility function is nonsaturate (U'(q) > 0) , then for

t sufficiently large, x(t) = 0

Before proving this theorem, we need the following lemmas.

Lemma 1:

If the utility function is nonsaturate, k0  is the initial stock

and u'(q'k 0 ) < U'(q) .- rq-- Then x(t) y(t) (-k )et

0= a + r 0

z(t) = 1 - ( -k0)e is optimal.

Proof:

Define

w(t) = e-at .[p(t) + s(t)]

wl(t) e-t [(q-l)(t) - s(t)]

where s(t) = -p(t) + rq f e-( +r)x'.(x)dx'e(c+r)t
t
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- -(a+r)x (a+r) t
wl(t) e .q.i(t) - rq e (x)dxe

t

at - (c+rx (a+r)t

>_ e .q.t(t) - r t) f e r)Xdx-e (y(t) is decreasing)

t

e- 0q > 0

=e .qi~) a+r >

Apparently, w(t) > 0 too.

By calculation, w(t) = r f wl(s)ds for all t , which implies

t

the complementary slackness is satisfied.
-a t te h ul

If we can show w(t) > e .i(t) , then the dual feasibility is

also satisfied, thus optimal.

U'(q'kO )  
>  ' (t) > U'(q)

s(t) -- -p(t) + r e-(a+r)x dx e(r+a)t

t

> -U'(q'k0) + r--- U'(q) >0
- + r

-at
implies w(t) > e 1P(t)

Lemma 2:

k(t) - 1 for t sufficiently large.

Proof:

Since k(t) is increasing and bounded, k(t) - K , y(t) - 0

as t ""
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If k < 1 , as t - , x(t) = l-y(t) - (t) I -kt) -y(t) -

1-k > 0 . By Property 5 (t) - 0 , contradiction. Thus k(t) 1 1

for t sufficiently large U

Now we are ready to prove the theorem.

Proof:

> 1 and U'(q) > 0 imply the existence of k < 1 such that
a + r

U'(qk) <U,( q) rq

By Lemma 2, there exists T > 0 such that k(T) > k

Now by Lemma 1, for t sufficiently large, we have x(t) = 0.

In the next section, we give a general algorithm to solve the

one machine problem completely. This algorithm comprises of solving

two subproblems (one with three activities, the other with two

activities) backward by turns. It turns out that we can partition the

machine stock into disjoint intervals such that on each interval

either two activities or three activities are optimal, and alternately.
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* PROBLFI I (k)

(1) Objective: To find the largest interval [k,k] such that

x(t) > 0 , y(t) > 0 , z(t) > 0 is optimal if the

machine stock is between [k,k]

(2) This method is similar to the dual simplex method. By maintaining

the dual feasibility and complementary slackness, we try to find

the largest interval such that the primal feasibility is also

satisfied.

0
(3) z(t) = k - r f y(s)ds t < 0

t

0
c(t) l-y(t) -z(t) +q'z(t) = l-k+qk-y(t) -r(q-l) f y(s)ds

t

Step 1: Solve equation U'(k-=q)'e U'(c(t)) with boundary

condition y(0) = 1 -k 
A

Step 2: Compute z(t)

Find T (T < 0) such that z(T) = k0 . (T always exists,

for as T e - , e[e - r(q - l) ] T - +o implies the equation in

Step 1 has no solution.)

Step 3: If for all t E [T,O) , 0 < y(t) + z(t) < 1 , y(t) > 0 , z(t) >0.

Let k o- k0 , A -T . Return.

Otherwise, go to Step 4.

Step 4: Find smallest T (T < T) , such that for t E (T,O)

0 < y(t) + z(t) < 1 , y(t) > 0 , z(t) > 0

Let k z(T) , A - -T . Return.
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PROBLEM II (k)

(1) Objective: To find the largest interval [k,k] such that

x(t) = 0 , y(t) > 0 , z(t) > 0 is optimal if the machine

stock is between [k,k]

(2) This method is similar to the simplex method. By maintaining

the primal feasibility and complementary slackness, we try to

find the largest interval such that the dual feasibility is

also satisfied.

-rt -rt
(3) x(t) 0 , y(t) = (l-k)e , z(t) = - (l-k)e ,

-r tc(t) = q[l - (l-k)e- ]

r0 (r.4)s U (r+)t

s(t) = -U'(c(t)) + [r- f eU (c(s))ds + U'(q'k .e
t

Remark: s(t) is the solution of the following integral equation with

boundary condition s(O) = 0

e- .t[U'(c(t)) + s(t)] = r f e [(q-l)U'(c(x)) -s(x)]dx
t

Step 1: Find T (T < 0) such that k0  1 -(l-k)e - rt = z(T)

(T always exists, for z(T) - _o as T- _.

Step 2: If for all t ( [T,O) , s(t) > 0

Let k-k , A -- T ,return.

Otherwise, go to Step 3.

Step 3: Find smallest T CT < T) such that s(t) > 0 for t E [T,0)

Let k z(T) , A -T . Return.

I ** .. '
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ALGORITHM

Initialize: Find k decided from Theorem 3-2.

k1 + k i - 1 k k

Step 1: Solve Problem I (k)

i -- i+l
x xI(t) -x(t) ,yi(t) y(t) z i(t) z(t) k. k Ai a

If ki  k0 ,stop.

Or else, k k. ,and go to Step 2.

4 Step 2: Solve Problem II (k)
_3

i i+l

x (t) 0 , (t) - y(t) , z (t) - z(t) , k , A. + A

If k. ko , stop.

Or else, k -k. , and go to Step 1.

To find the optimal solution, we have to reverse the order of the

indices. Let N+1 be the last index.

old indices -kN l A kN ki A ki -1 kI =k A
N ,i s~il / ,Js 11~ 1 A1

...... J/ J ' , .. ... .... ... ,lIl lII jIjII I

new indices k0  1 kI  kN AN+2-i kN+_ kN  N+l 1

i N+2-i - =

k, k +l- , 1< i < N+l
N+2-i N+2-i

x -X N (t) , y i(t)--y (t), z i(t) -z (t)

2 < i < N+l
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i

Define T. - A , 1 < i < N ,T o = 0. Then
. l J - =

(I) xi(t) , y i(t) , z (t) is optimal for t E (Ti_,Ti) i < i < n

(2) x(t) 0 , y(t) = (1-k)e - rt , z(t) = i-(l-k)e- r t  is optimal

for t > T
= n
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93. Quadratic Utility Function

(Mx2
When the utility function is quadratic, U(x) M 2

we have a simple optimal solution. First we would like to compute k

p(t) =M - q + q(l -k)er

-f (r+)s (r+ct)t
s(t) =-440t + rqjfe 'iWsds-e

tAlr(q-.l) -a -- a -r(q -1) + r-rt
a + r (M -q) ot+ 2r r q (1.-.k)e

Case i: M > q

If a -r(q -1) + r < 0 , then k=0

If a -r(q -1) + r > 0 , let ksatisfyrq 1- (M-q)-

a~ + rr

Case ii: M = q

If a -r(q -1) + r < 0 , then k = 0

*If a -r(q -l) + r > 0 , then k = 1I (By Property 2, this means

we never reach this situation.)

Remark:

a - r(q -1) + r < 0 is not a sufficient condition for k = 0

in a general concave utility function. If k = 0 , then we have

x(t) = 0 for all t . If k > 0 ,we would like to find the optimal

program by using Algorithm.

Solve Problem I (k)
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~0

i (t) = M - + k - qk + y(t) + r(q-) fy(s)ds t < 0

iI Solve U'(k-q)-[c-r(q-l)]ti- -_ "0!

Solve U'(kq)e= (t) with y(0) = 1 - k Using the

equation r( ) (M-q) r(q- q(l-k) 0 to simplify

y(t) , we get

(l_ [a r(-ql 1) + r3]2 er(q-l)t+(M-qk)[o,-r( -l) [a-r(q-l)]t
*[t - 2 r(q - 1) (2r+ ct) a - 2r(-q -1)

Fact 1:

y(t) is decreasing and y(t) > 0 for all t < 0

Proof:

o, - r(q-1) < 0 implies y(t) < 0 , thus y(t) is decreasing.

Also y(O) - 0 , thus y(t) > 0 for t < 0i

Fact 2:

y(t) + z(t) is a concave function.

Proof:

d [y(t) + Z ) -- d [y W + z(t)] < 0 (for < r(q < 0
d t 2  

- _

and c-r(q-l) + r > O)U

Fact 3:

y(t) + z(t) 1 for all t < 0

j ,>,



30
J

Proof:

y(t) + z(t) is increasing as t - 0 (Otherwise, violate

y(t) + z(t) < 1 for y(O) + z(0) = 1 .) By Fact 2, y(t) + z(t)

is increasing for all t < 0 , thus y(t) + z(t) < 1 for all t < 0.

From Fact 3 and Fact 1, Algorithm stops.

Summarize the results as follows:

(1) If M > q:

(i) If k0  k , then x(t) = 0 y(t) = (l-k0)ert
-rt

z(t) = 1 - -kr0)e is optimal.

(ii) If k 0 < k ,x(t) > 0 , y(t) > 0 , z(t) > 0 is optimal

if t < T , where k(T) = k .

x(t) = 0 , y(t) > 0 , z(t) > 0 is optimal if t > T

(2) If M q k

If a -r(q-1) + r > 0 (k 1) , then x(t) > 0

y(t) > 0 , z(t) > 0 is optimal for all t

(ii) If a -r(q-1) + r < 0 (k 0) , then x(t) = 0
= -rt-rt

y(t) (l-k 0 )e z(t) = 1- (l-k 0 )e is optimal.

Example 1:

q= 2, - 0.9, r = 1 , k = 0 , and the utility function is

U(x) -x r(q-l)-c 0.1 > 0 , c-r(q-l) + r = 0.9 > 0

0.1 x - x 2 x (1-k) = 0 implies k 0.73 We can compute
1.9 2.9

y(t) , z(t) , x(t) , when k(t) < 0.73 , using the formula derived

before U
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Let T be such that x(T) + 2-z(T) = 1 , and z(T) k

Example 2:

Consider a modified quadratic utility function U(x) = 4x - 12

if x < 1 U(x) (5 -x) 2 if x > 1 . From Example 1, if

> k(t) > k (k(t) is the capital stock at time t), x(t) > 0

if k(t) > k , x(t) = 0 . If k(t) < k , the output is located on

the linear part of the utility function, thus x(t) = 0 (by Property 5,

Corollary 2).

The following pictures show the discontinuous behavior of the

optimal solution.

A A

x(k) y(k) z(k)

k k

Remark:

We can remodify the utility function to be strictly concave by

U(x) 4x 12 - F.(x-1) , c > 0 if x < 1 . As c > 0 , U"(x) - 0

if x < 1 By Corollary 1, Property 5, x(t) > 0 for all t , where

k(t) < k , is not optimal.
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CHAPTER IV

GENERAL CONCAVE UTILITY FUNCTION - MANY MACHINES CASE

In this chapter we generalize the idea of Chapter 2 and Chapter 3

to obtain the asymptotic result. Also, we give an example which shows

the off-beat nature of this general problem. Again, we list the

stationary program for completeness.

§1. Stationary Program

Theorem 4-1:

riq.
1 > max is the sufficient and necessary conditiona + r.

l<i<n 1

for the existence of an optimal stationary programE

riq i
From now on, assume 1 max S+ r.

<i<n a

§2. Nonstationary Program

To begin with, we prove some simple properties.

Property 1:

w(t) is continuous.

Proof:

We only need to consider those T > 0 such that there exist

i , j (i 0 j) and yi(t) > 0 for t ( (T-E,T) and yj(t) > 0

for t E (T,T+E)
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If t E (T-c,T) w(t) = r f w(s)ds , w(t) > r fw.(s)ds
t t

If t E (T,T+c) w(t) = rj w.(s)ds w(t) > r, wi(s)ds

t = t
,S) ~w.(s)ds <

If w(T) > ri f wi(s)ds, then as t - T , w(t) , fr w i s)ds

T T

w(T) = rj f wj(s)ds , contradiction. Thus w(T) = r w.(s)ds and
3T I

w(t) is continuousU

Remark:

This property gives us the boundary condition.

Property 2:

4(t) is continuous.

Proof:

If we can prove that for any sequence tn - T , such that x(t n )

or there exists i such that z (t and z (t 0 s =

we have (t) 4(T) , then 4(t) is continuous.

The proof is similar to that of Property 4, Chapter 3K

Corollary:

If u(x) is strictly concave, then (1) c(t) is continuous;

(2) x(t) and z.(t) are all continuous 1 < i < nN

1

Below we study the asymptotic behavior. We follow the notation

of Chapter 2, and let L (k 1 k N k. 1, k > 0
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For any best machine j , k - (kV ... k ) E L , define the following:

N j( N rt
c(t,k) = , k.qi + q. - ki) •l - eJ)

i=l 1~

s(t,k) = -U'(c(t,k)) + rq j fe ) U'(c(s,k))ds-e )

t

E L ,and rq. le q U'(c(sk))ds-e

t

•U '(c(t,k)) > 0*qN+lU=

G K

e- Su'(c(s,k))ds-r.(q- qi) + e J U'(c(s,k))ds.

t t

r.t
e r q.(r. -r.) > 0 for i E I - lj}

for all t > 0

Given any initial stocks k. of machine i, I < i < n , let

k = (kI, .... kN ) , and we have the following theorem.

Theorem 4-2:

If K E G , then the best program with respect to j is optimal.

I1
If N = n , then replace qN~ by 1 ; * implies s(t,k:)>0 for all t.
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Proof:

The output rate function is c(t,k) Define:

w(t) =e~ .[U'(c(t,k)) + S(t,k)]

1 1 +

if iE I

(q. 1)U'(c(tk)) -S(t,k)

=qi.U(c(t,k)) - r q. e 3 -U'(c(s,k))ds-e

t

r iq.

>q.*U' (c(t,k)) - ~-~-U 1 (c(t,k)) (U' (c(t,k)) is decreasing)
1 ~ O c+ r

> 0 (definition of I)

implies w (t) =e-at [(q. -lU'(C(t,k)) -S(t,i)I

if i 1I

(q . - 1)U'(c(t,k)) -s(t,k)

(trS (x+r. ) t
< q 1 U'(c(tK)) - r q Je ~ U'(c(s,k))ds-e

t

< 0 (definition of G)

implies w (t) 0

w(t) - r~ f wj(s)ds (by the result in the one machine case).
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If i 5 I

w(t) - r w w(s)ds ; w(t) > 0
fo

t

If iE I

w(t) - rifwi(s)ds

f I t

rO iOqj f (a+r.)s r.t

e-S.U'(c(sk))ds •r (q q + e .U'(c(s,k))ds-q(r, -r.).e

t t

> 0 (definition of G)

Complementary slackness is also satisfied. Thus the best program

with respect to j is optimalE

N j N \
Let a = *i-qi + b , b qj - ki , then c(t,k)

-r.t
a - b'e , U'(a) < U'(c(t,k)) < U'(a-b)

Corollary 1:

If

r q. q (r -r

U'(a) '(+ , U'(a)
( r )q N( + rj )r -(q q

U'(a -) <minif i E I - {j} and r i > r

U' (aa m r i"
UI(a) ( + r 1r. 1 ) if i E I-{j} and r > r

q.(r. - r.).a i

-7

I|
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then the best program with respect to j is optimal.

Proof:

.)s (cL+r.)t

rjfe "U'(c(s,k))ds'e ( • '(c(t,k))

t

> U'(a) U'(a -b) > 0 (by assumption).a + r qN+l"1
J

If r. > r. and i E I-{j}

000- (x+r.)s r,t
Se-aS 'U(c(sk))ds'ri'(q-q +  e J U'(c(s,k))ds-e J q-(r -r.)

A t t

> '(a -b)-r..(q j -q i) U'(a)-qI.(r.-ri ]
> 31 + r1 * l (q" > q.)

a + r. 1
J

>0 (by assumption).

I
If ri > r. and i I - {j}

1 OJ

( -j -(cL+rj)s r t
If e-aS.U'(c(s,k))ds-ri •  -qi ) +f e J U'(c(s,k))ds'e j *.j(r. -r.)

t t

[ U ' ( a ) -r i-(q i - q i  +) U '(a  - b ) q j (r  ] -r -a

=~ a + r.( > i"

Thus K E G and the best program is optimal.

Corollary 2:

If U'(a) > 0 and > iqi for 1 j ,then when
a+r a +ri

[ ki  l , E G
. . -
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Proof:

r q. r q "

a(N+l I), implies (a + r.j)q N+l

If i E I- {j} and r. > ri

q.(r. - ri)c - (a + r.)ri(qi q) = q(a + r - r q.( + r.)
J 1

> r +q > r i

q. (rj r r)O

implies (I + r.)r i .

If iGI- {j} and r. > r.1 J

( + r.)r.(q - q q (r - r )a = r q.(a + r.) - riqi(a + r.) > 0

(a + r.)r i .(q. - qi )

implies - > 1 .q.(r. - r.)ci

N N
As k-) 1 , U'(a) U'(a-b) ; thus as k. - 1 , Corollary 1i--i i=l 1

is true, which implies K G G U

Remark:

If the best machine is not unique, we can use Taylor Expansion

to get the similar result.

Lemma 1:

As t , c(t) - constant, z i(t) - constant, yi(t) - 0 ,

x(t) - constant.
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Proof:

Since k.(t) is increasing and bounded, ki(t) c. as t

1 1

n
which implies yit) 0 , zit) + x(t) - 1 as t -

1i i

Since q > q > ... > q > 1 , so x(t) and z.(t) - constant
i~l 1

as t - c(t) = x(t) + Z q'zi(t) - constant as t co U

Theorem 4-3:

N
As t - , i(t) 1

Proof:

For any E > 0 , there exist T,PI,P 2'' P n P > 0 , such that

n
x(t) > P , zi(t) > P. 1 < i < n and P. + P > 1 - e for all

t > T . After time T we can solve the original problem in the

following two steps:

Step 1: Put P.(P) units of labor to work with machine i (alone).

Step 2: Consider a new problem with 1 -(21 Pi + P) units of

labor: let c(t) be the output rate function, U(x)

be the utility function, where U(c(t))

U (t) + i q + p)i l

As c - 0 , u(c(t)) - constant for all t , thus the optimal

program for Step 2 is the best program with respect to j , which

implies that we only build machine j as t - . Combining Step 1
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and Step 2, we find that as t we only build machine j .From

the proof of Theorem 4-2, we must have z.(t) = 0 i it I as t -

N
which implies k k (t) -~1 as t -

Corollary:

if U'(;,) >0 nr r. for i 0j , then for t

sufficiently large, the best program with respect to j is optimalE

Property 3:

p(t) is decreasing.

Proof:

By contradiction. If not, let (T -E,T) be the last time interval

such that 'p(t) is increasing. (T exists, for ip(t) is continuous

and as t -~~the best program is optimal.)

There are two possibilities: x(t) > 0 or 0 < z (t) <
i 3

for some i . If x(t) > 0 and y (t) > 0 t Cz (T -c,T)

w(t) =e-at. p(t) = r i f w (sds

T

< iw(s)ds + r P q i-l).t(T) f e ds

tT

(tp(t) is decreasing for t T and wR Wt <

e-at. i(t)-(q -1))M

-1
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As t -~T ,c -a T) i (T) -e~ implies ai r (aq 1

* But p(t) =c-e £(by Property 5, Chapter 3) implies

* q(t) is decreasing, contradiction. In the case of 0 < z i(t) <kj the proof is similarU

Corollary 1:

If y (t) > 0 then ai < r.(q.l
.7,. 2. 1

4 Proof:

ifrlla~~x) is strictly concave, then c(t) is strictly increasingE

53. Example

Example 1:

The following two-machines problem shows that we build different

* machines. (Time [0,T) we build machine 2, time [T,-) we build

machine 1.)

U~x (5 - 2  0.9 , r I 1 , a 50 , r 2 = 4 ,q 50 19

1 q 2 2 implies machine 1 is best, machine 2 is good.
ai+ r 1q 2  a+r2

And we can find the exact dual price, using the technique in Chapter 3,

such that there exist T , k > 0 (k -1 -e
2 0.0932) and
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-rl(t-T) -rl (t-T)

x(t) = 0 , y(t) = (l-k)e , z(t) 1 - k - (l-k)e ,

z2(t) = k Y2 (t) = 0 is optimal for t > T ; x(t) 0 , yl(t) = 0

-rtt -rt
Zl(t) 0 Y2 (t) e , z2(t) = 1 - e is optimal for t < T

Example 2:

This two machines example shows that we build machine 2 in some

time interval (T1,T2) , but as t we never use machine 2.

40
51 , k= , q= 50 , = 0 , a = 0.9 t q2 1.
M= 1 r =~ 1  5 , 1 22 1.

r2 = some large number (decided later), u(x) = (512 x ) ' q

1lq1 50 40 r2q217r 1.9 1.9 2 = a + r implies z2(t) 0 as t -

(machine 2 is not good). a - r1(q1 -l) + r1 = 0.9 - 49 + 1 0

-rlt -rlt

so if we can prove that x(t) = 0 , yl(t) = e , z(t) 1 - e

Y2 (t) = 0 , z2(t) 0 is not optimal, then there must exist some time

-rlt

interval in which we build machine 2. If x(t) = 0 , ylCt) = e 1

z1W = 1 - er1 is optimal, then w2(t) = e ) rl1 (M-q) +
1r 2 2 + 1
1 q rq 1 If rlql rlq I  0

e r J If 1 2 a r+ 2 2 a +2 a + 2r
11e "l" q e rI

and (q2  a + r) (M-ql) + q 2 - + 2r) > 0 , then there exists

T > 0 such that (q2  r 1 ql) (M-ql) + e r ql(q ) 1 qr 0

which implies w2 (t) - 0 t > T , w2 (t) > 0 t < T

ODT T

r 2 fw 2(s)ds r 2 f w2 (s)ds " r 2 "k where k -fw 2 (s)ds > 0

T. T T

> 2(~ as r *1.0
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Contradiction to w ('> r 2 fw 2(s ds . Check:

T
2

r ql ' -5 < 0 •

2 a + rI

r-ql q 20 - 16.3 - 3.7 > 0q2 - 2r +-

(q 2  r 1 q- M-l ,( r 1 q, -5 +50 x3.7 > 0

2 a + r (M-q) 2r I +

i --



44

CHAPTER V

VARIANT OF THE MODEL

In this chapter we introduce the depreciation factor 6 into the

model. Difficulty arises here because the capital stocks are no longer

monotonic over time in the many machines case. For simplicity, we

concentrate on the one machine case.

The model with the depreciation factor 6 is:

(P) max etU(x(t))dt s.t. A-x(t) e6(t-)-B'x(s)ds + b(t)

0

x(t) > 0

(D) min w(t)-b(t)dt s.t. w(t)A > e 6(st) w(s)'Bds +

0 t

-et VU(x(t))dt , w(t) > 0

In the one machine case, if we compare the depreciation and non-

depreciation cases, the differences are the following two equations:

6(t-s)-6t
z(t) < r e6(t).y(s)ds + k0.e

w(t) > r e- w1(s)ds

t

The following program is called contraction: x(t) 1 1-k 0e-6t

y(t) - 0 , z(t) - k0 .e-6t
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Theorem 5-1:

1 > r + - is a necessary condition for the existence of an

optimal contraction program.

Proof: -6t

c(t) = q-k 0 -e + 1 - k0 .e , p(t) is increasing.

Define: w(t) = e-ct.p(t) , Wl(t) = e (q-l) (t)

0 < w(t)- r f-e6(t w(s)ds (*)

t-1

<e "(t) - r(q-l)(t)'e 6t  e-(a+')Sds (p(t) is increasing)

t

-cit c + 6 - r(q-l)= e , (t) c+

implies a + 6 - r(q-l) > 0 , I > r
= =ci+r+6

Remark:

(1) (*) is the sufficient and necessary condition for the

existence of an optimal contraction program.

(2) In the linear utility function case, the above condition

is also sufficient.

From now on, assume 1 < r and U'(q) > 0
m nI+r+ a

In the following, we prove an asymptotic result similar to the

nondepreciation case.
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Lemma 1:

t -(t-s) -6t
If x(t) 0 , z(t) r f e y(s)ds + ke , x() + y(t) +

0

1r )-(r+6)t r
z(t) 1 1 , then y(t) r6 + r + 6 k e, z(t) r + 6

I r  k) e ( r + 6 ) t

r+6 e

Proof:

f e- (t-S)y(s)ds + y(t) = 1 - k-e - t  implies

0

6 + (r k e(r+6 )t z(t) r r k (r )t(t) - r +--- r + 6 - k e) r + 6 r + k e

Define:

c(t,k) = q [r + 6 -r + - k)e

s(tk) = -U'(c(t,k)) + rq e(+r+6)x.Ul(c(xk))dxe(a+r+6)t

t

s(t,k) - 'c~~) q r e~r 6 xw(~~)de++

t

G= {k 0 < k < 1 , s(t,k) > 0 , e(t,k) > 0 for all t > 0)

r- ,( r rq.U ,  -r

If k= r 6 r = r +
r + s t, 6 r + 6 a + r + 6

+ r a+r+66 , r + 6 c+r+

T r EG G 0Thsr +
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Lemma 2:

s(t,k) is the solution of the following equations:

-0,t -a_'t.
W(t) = e -  [U'(c(t,k)) +s(t,k)] , wl(t) =e -  [(q -l)U'(c(t,k)) -s(t,k)],

w(t) = r f es- )W(S)ds
t

Proof:

It is a straightforward calculation U

Theorem 5-2:

( r )e(r+6)t
If k E G ,then x(t) = 0 , y(t) + + - k)e

z~) r (r ) (r+S)t
z(t) + r - k e is optimal.

Proof:

Define:

I/ -at

w(t) = e -[U'(c(t,k)) + s(t,k)]

i -at
iw(t) e -q-l)U'(c(t,k)) - s(t,k)]

1 (-t()~t+,) +

w-(t) eat- '[ (c(tk)) r fe (a+r+S~s.U(c(s,k))ds-e (r+a+6)

-at- -at

e .q.(t,k) - e .[(q-l)U'(c(t,k)) - s(t,k)]

By Lemma 2 and the definition of G , the rest of the proof is

straightforward U

Corollary:

r
If k0 +r + ,then k E G.

0 r + 60
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Proof:

As k0  r + s(t,k 0) - s t, r > 0 , k0) et, r + 6> 0

implies k0 E G

Lemma 3:

t -6(t-s)
k(t) = k 0e + r f e* y(s)ds is monotonic.

0

Proof:

If k(t) is not monotonic, say increasing in (T-c,T) , decreasing

in (T,T+c) Since k(t) is continuous, some moment right before T

should have the same capital stock as some moment right after T , thus

the same behavior. (See the illustration below.)

k(t)

T-E T T+e t

Contradict to the fact that k(t) is increasing before T and k(t)

is decreasing after T •

Lemma 4:

As t - , c(t) - constant, P(t) - constant.

Proof:

As t - - z(t) = k(t) - constant (k(t) is monotonic and bounded);

y(t) - constant (k(t) - constant);
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x(t) -~constant (x(t) + y(t) + z(t) =I

c(t) =x(t) + q-z(t) - constant, p(O)- constant

Lemma 5:

If x(t) > 0 ,y(t) > 0 ,z(t) > 0 ,then p(t) e

Proof:

StraightforwardU

Lemma 6:

As t ~ y(t) -8 > 0

Proof:

By contradiction. If y(t) -~0 as t - - , then z(t) -~0

x(t) -~ 1 as t -~.If y(t) #0 as t - - , contradiction to

Lemma 4 and Lemma 5. if y(t) =0 as t -~,contradiction to

Theorem 5-l1

From Lemmas 4, 5 and 6, we know for t sufficiently large,

xc(t) =0 . Thus k(t) r kt s tW tt h
r + ,kt) G a t- .W stt th

above results in the following theorem.

Theorem 5-3:

(1) If k < r then k(t) is increasing, and for tIsufficiently large k(t) r ,X(t) =0

(2) If k > r then k(t) is decreasing, and for t
0 r+ 6

sufficiently large k(t) -~ r x(t) 0 O
r +
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